TP LA CHIMIE AU SERVICE DE LA PROTECTION DES PLANTES

Chimie et lutte contre les maladies de certaines plantations agricoles

Document 1. La chlorose des végétaux

La chlorose des végétaux est une décoloration plus ou moins prononcée des feuilles, due à un manque de chlorophylle. La chlorophylle permet la photosynthèse et donne aux feuilles leur couleur verte.

Le manque de chlorophylle peut provenir d'une insuffisance en magnésium, en fer, en azote, en manganèse ou en zinc, autant d'éléments chimiques indispensables à la synthèse de la chlorophylle.

Dans le commerce, on trouve des solutions dites « anti-chlorose » riches en ions fer (II) qu'il convient de pulvériser directement sur les plantes et les sols.

Quelques noms commerciaux et caractéristiques des produits « anti-chlorose »		
Nom du produit commercial	Teneur en fer (g.L ⁻¹)	Utilisation référencée
Fer A 400 LiquidoFer 400	40	Dépôt sur les sols
Fer Cler	25	Dépôt sur les sols
Fer Soni H39F	20	Dépôt sur les sols et
		pulvérisation sur les feuilles
FerroTonus	40	Dépôt sur les sols
PlantoFer 30	30	Dépôt sur les sols
FerMi H31	10	Dépôt sur les sols et
		pulvérisation sur les feuilles

Une solution inconnue « anti-chlorose » est à disposition d'un jardinier. Afin d'utiliser le plus efficacement possible ce produit, il doit retrouver le fournisseur du produit et ainsi consulter sur son site commercial la dose d'application nécessaire et suffisante pour traiter les rosiers.

Pour cela, il doit doser les ions fer (II) que la solution contient en suivant le protocole décrit dans le document 2.

Document 2. Protocole de titrage des ions fer (II) dans une solution « anti-chlorose »

- ➤ Diluer 30 fois une solution « anti-chlorose » S contenant les ions Fe²+ de concentration molaire volumique c à déterminer. La solution ainsi obtenue est appelée S';
- Introduire dans un erlenmeyer un volume $V_1 = 20.0$ mL de solution S';
- Réaliser le titrage à l'aide d'une solution titrante de permanganate de potassium de concentration $c_2 = 5.0 \times 10^{-3}$ rnol.L⁻¹ en ions permanganate MnO₄.

L'équation de la réaction support du titrage s'écrit:
$$\mathsf{MnO_4^-}_{(aq)} + 5 \; \mathsf{Fe}^{2^+}_{(aq)} + 8 \; \mathsf{H^+}_{(aq)} \; \rightarrow \; \mathsf{Mn}^{2^+}_{(aq)} \; + 5 \; \mathsf{Fe}^{3^+}_{(aq)} + 4 \; \mathsf{H}_2\mathsf{O}_{(l)}$$

On admet que toutes les espèces chimiques mises en jeu au cours de ce titrage sont incolores ou peu colorées, à l'exception des ions permanganate MnO₄- qui donnent au liquide une couleur violette. Les ions H⁺ sont en excès.

Donnée: Masse molaire atomique du fer : $M(Fe) = 56 \text{ g.rnol}^{-1}$

- 2.1. En quoi l'usage d'une telle solution peut permettre de lutter contre la chlorose des végétaux?
- 2.2. Comment l'équivalence du dosage est-elle repérée ?
- 2.3 Réaliser le dosage de la solution S' (au bureau), déterminer le volume à l'équivalence.
- 2.4. À partir de ce titrage, le jardinier détermine le nom du produit commercial mis à sa disposition. Expliquer sa démarche, détailler ses calculs et donner le nom du produit commercial.