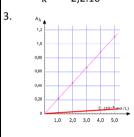
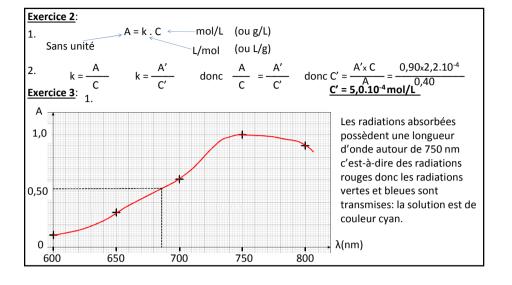
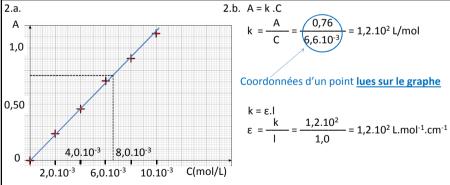
Correction exercices: Loi de Beer Lambert.


Coordonnées d'un point lues sur le graphe

Exercice 1:


1. La courbe représente une fonction linéaire donc A = k . C donc :


Finalement:
$$A = 2,2.10^3 \text{ k}$$
 = $\frac{A}{C} = \frac{1,1}{5,0.10^4} = 2,2.10^3 \text{ L/mol}$

2.
$$C = \frac{A}{k} = \frac{0.73}{2.2.10^3} = 3.3.10^{-4} \text{ mol.L}^{-1}$$

Le permanganate de potassium ${\rm KMnO_4}$ n'absorbe quasiment pas les radiations de longueur d'onde 420 nm donc quelle que soit la concentration en ${\rm KMnO_4}$, la valeur de A sera toujours très proche de 0 donc on obtiendra la courbe d'étalonnage <u>inexploitable</u> cidessous; c'est la raison pour laquelle <u>on doit toujours choisir une radiation fortement absorbée par le soluté</u> quand on travaille avec la loi de Beer-Lambert.

2.c. La solution utilisée pour réaliser le spectre d'absorption (courbe $A=f(\lambda)$) a une concentration de 4,5.10⁻³ mol/L donc pour la longueur d'onde étudiée, l'absorbance vaut:

A = k . C = 1,2.10² x 4,5.10⁻³ = 0,52 ; on lit sur la courbe A=f(λ) , $\underline{\lambda}$ = 686 nm.

2.d. $C' = \frac{A'}{k} = \frac{0.32}{1.2.10^2} = 2.8.10^{-3} \text{ mol.L}^{-1}$ (la lecture graphique est moins précise que ce calcul)